1.)

The Lagrangian is given by:

$$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2\right) - mgy \tag{1}$$

We can write the x and y components in terms of the angle, θ , and and the driving term:

$$y = l(1 - \cos(\theta)) \tag{2}$$

$$x = l\sin(\theta) + x_0\cos(\omega t) \tag{3}$$

Taking the time derivate of Eq (1) and (2) and plugging into the Lagrangian:

$$L = \frac{1}{2} \left(l^2 \dot{\theta}^2 - 2l\omega x_0 \dot{\theta} \cos\theta \sin(\omega t) + \omega^2 x_0^2 \sin^2(\omega t) \right) - mgl(1 - \cos(\theta))$$

Keeping only terms to the first power of ω , we can find the equation of motion for θ :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{\partial L}{\partial \theta}$$

$$\frac{d}{dt} \left[ml^2 \dot{\theta} - ml\omega x_0 \cos(\theta) \sin(\omega t) \right] = -mgl \sin(\theta) + m\omega lx_0 \dot{\theta} \sin(\theta) \sin(\omega t)$$

$$ml^2 \ddot{\theta} + \underline{ml\omega x_0} \dot{\theta} \sin(\theta) \sin(\omega t) - ml\omega^2 x_0 \cos(\theta) \cos(\omega t) = -mgl \sin(\theta) + \underline{m\omega lx_0} \dot{\theta} \sin(\theta) \sin(\omega t)$$

$$ml^2 \ddot{\theta} = -mgl \sin(\theta) + ml\omega^2 x_0 \cos(\theta) \cos(\omega t)$$

$$\ddot{\theta} = -\frac{g}{l} \sin(\theta) + \frac{\omega^2 x_0}{l} \cos(\theta) \cos(\omega t) \qquad (4)$$

We now assume that the motion, $\theta(t)$, can be separated into fast and slow components: $\theta = \overline{\theta} + \widetilde{\Theta}$. I will use the notation that $\overline{\theta}$ corresponds to the slow motion while $\widetilde{\Theta}$ corresponds to the fast motion. We now plug our definition of θ into Eq. (4) and expand in powers of $\widetilde{\Theta}$:

$$\ddot{\bar{\theta}} + \ddot{\tilde{\Theta}} = -\frac{g}{l}\sin(\bar{\theta} + \tilde{\Theta}) + \frac{\omega^2 x_0}{l}\cos(\bar{\theta} + \tilde{\Theta})\cos(\omega t)$$
$$= -\frac{g}{l}\sin(\bar{\theta}) - \frac{g}{l}\frac{\tilde{\Theta}\cos(\bar{\theta})}{2} + \frac{\omega^2 x_0}{l}\cos(\bar{\theta})\cos(\omega t) - \frac{\omega^2 x_0}{l}\frac{\tilde{\Theta}\sin(\bar{\theta})\cos(\omega t)}{4}$$

We can now average over the fast period. By doing so, all of the "fast" terms in the above equation will be approximately zero. We can see that term 1 is a slow term as well as term 4. Term 4 is slow due to the beat phenomenon, which we will see from the multiplication of $\tilde{\Theta}$ and $\cos(\omega t)$ in this term. Terms 2 and 3 are fast terms and will go to zero under averaging.

$$\langle \ddot{\theta} \rangle = -\frac{g}{l} \langle \sin(\bar{\theta}) \rangle - \frac{\omega^2 x_0}{l} \langle \tilde{\Theta} \cos(\omega t) \rangle \sin(\bar{\theta})$$
 (5)

Switching over to the fast components:

$$\ddot{\tilde{\Theta}} = -\frac{g}{l}\tilde{\Theta}\cos(\bar{\theta}) + \frac{\omega^2 x_0}{l}\cos(\bar{\theta})\cos(\omega t)$$

The first term went to zero as $\Omega^2 \ll \omega^2$, where Ω is just the natural freq of the oscillator, $\sqrt{g/l}$ We can integrate this equation with respect to time twice, arriving at:

$$\tilde{\Theta} = -\frac{x_0}{l}\cos(\bar{\theta})\cos(\omega t) \tag{6}$$

We plug this expression for $\tilde{\Theta}$ into Eq (5) to see:

$$<\tilde{\Theta}\cos(\omega t)> = -\frac{\omega^2 x_0}{l} < -\frac{x_0}{l}\cos(\bar{\theta})\cos(\omega t)\cos(\omega t)>\sin(\bar{\theta})$$
$$<\tilde{\Theta}\cos(\omega t)> = +\frac{\omega^2 x_0^2}{l^2}<\cos^2(\omega t)>\cos(\bar{\theta})\sin(\bar{\theta})$$
(7)

The average of $\cos^2(\omega t)$ can be computed:

$$<\cos^{2}(\omega t)>=\frac{1}{T}\int_{0}^{T}\left(\frac{1}{2}+\frac{1}{2}\cos(2\omega t)\right)\mathrm{dt}=\frac{1}{2}$$

And so:

$$\langle \ddot{\bar{\theta}} \rangle = \ddot{\bar{\theta}} = -\frac{g}{l}\sin(\bar{\theta}) + \frac{\omega^2 x_0^2}{2l^2}\cos(\bar{\theta})\sin(\bar{\theta}) \tag{8}$$

We can write Eq (8) in the form: $\ddot{x} = -\frac{d}{dx}(U)$, where U is the potential:

$$\ddot{\bar{\theta}} = -\frac{d}{d\bar{\bar{\theta}}} \left[-\frac{g}{l} \cos(\bar{\theta}) - \frac{x_0^2 \omega^2}{4l^2} \sin^2 \bar{\theta} \right]$$
(9)

Eq (9) tells us then there the effective potential is:

$$U_{\text{eff}} = -\frac{g}{l}\cos(\bar{\theta}) - \frac{x_0^2\omega^2}{4l^2}\sin^2\bar{\theta}$$
(10)

Our goal is to find the extrema of this function Using a trig identity to reduce the power of $\sin^2(\bar{\theta})$ term and taking a spatial derivative:

$$\frac{dU_{\text{eff}}}{d\bar{\theta}} = \frac{g}{l}\sin(\bar{\theta}) - \frac{x_0^2\omega^2}{4l^2}\sin(2\bar{\theta}) = 0$$
$$\frac{dU_{\text{eff}}}{d\bar{\theta}} = \left(\frac{g}{l} - \frac{x_0^2\omega^2}{2l^2}\cos(\bar{\theta})\right)\sin(\bar{\theta})$$
$$\bar{\theta} = 0 \text{ or } \pi \text{ or } \arccos\left(\frac{2gl}{x_0^2\omega^2}\right)$$

The stability of these extrema are found by taking another spacial derivative.

$$\frac{d^2 U_{\rm eff}}{d\bar{\theta}^2} = \frac{g}{l} \cos(\bar{\theta}) - \frac{x_0^2 \omega^2}{2l^2} \cos(2\bar{\theta})$$

For $\bar{\theta} = 0$

$$\left. \frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} \right|_{\bar{\theta}=0} = \frac{g}{l} - \frac{x_0^2 \omega^2}{2l^2} \tag{11}$$

Which is positive, and thus stable, if $\frac{g}{l} > \frac{x_0^2 \omega^2}{2l^2}$. For $\bar{\theta} = \pi$

$$\left. \frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} \right|_{\bar{\theta}=\pi} = -\frac{g}{l} - \frac{x_0^2 \omega^2}{2l^2} \tag{12}$$

Which is always negative, and thus always unstable.

For $\bar{\theta} = \arccos\left(\frac{2gl}{x_0^2\omega^2}\right)$:

$$\frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} = \frac{g}{l} \cos(\bar{\theta}) - \frac{x_0^2 \omega^2}{2l^2} \left[2\cos^2(\bar{\theta}) - 1\right]$$

and evaluating at this point:

$$\begin{split} \frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} \bigg|_{\bar{\theta}} &= \frac{g}{l} \left(\frac{2gl}{x_0 \omega^2} \right) - \frac{x_0^2 \omega^2}{2l^2} \left[2 \left(\frac{2gl}{x_0^2 \omega^2} \right)^2 - 1 \right] \\ & \frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} \bigg|_{\bar{\theta}} = -\frac{2g^2}{x_0^2 \omega^2} + \frac{x_0^2 \omega^2}{2l^2} \end{split}$$

Which is stable if:

$$\frac{x_0^2 \omega^2}{2l^2} > \frac{2g^2}{x_0^2 \omega^2}$$

Thus we finally have:

$$\bar{\theta}=0$$
 is a stable equilibrium point if $\frac{g}{l}>\frac{x_0^2\omega^2}{2l^2}$

and

$$\bar{\theta} = \arccos\left(\frac{2gl}{x_0^2\omega^2}\right)$$
 is a stable equilibrium point if $\frac{x_0^2\omega^2}{2l^2} > \frac{2g^2}{x_0^2\omega^2}$

While $\bar{\theta} = \pi$ is always unstable.

b.)

We can write the x and y components as:

$$x = l\sin(\theta) + r_0\cos(\omega t)$$
$$y = l\cos(\theta) + r_0\sin(\omega t)$$

Plugging this into our usual Lagrangian for a pendulum:

$$L = \frac{1}{2}m\left[(l\dot{\theta}\cos(\theta) - r_0\omega\sin(\omega t))^2 + (r_0\omega\cos(\omega t) - l\sin(\theta)\dot{\theta})^2\right] - mgl(1 - \cos(\theta))$$
$$L = \frac{1}{2}m\left[l^2\dot{\theta}^2 + r_0^2\omega^2 - 2r_0\omega l\dot{\theta}\sin(\omega t)\cos(\theta) - 2r_0\omega l\dot{\theta}\cos(\omega t)\sin(\theta)\right] - mgl(1 - \cos(\theta))$$

We can now find the equations of motion:

$$\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{\theta}} \right] = \frac{\partial L}{\partial \theta}$$

$$ml^{2}\ddot{\theta} - r_{0}\omega lm \quad \left(\omega\cos(\omega t)\cos(\theta) - \dot{\theta}\sin(\omega t)\sin(\theta) - \omega\sin(\omega t)\sin(\theta) + \dot{\theta}\cos(\omega t)\cos(\theta)\right)$$
$$= -mgl\sin(\theta) + r_{0}\omega l\dot{\theta}m \left(\sin(\omega t)\sin(\theta) - \cos(\omega t)\cos(\theta)\right)$$
(13)

We keep only to first order in ω , dropping all higher order terms. Several terms cancel, are we are left with:

$$ml^{2}\ddot{\theta} = -mgl\sin(\theta) + r_{0}\omega^{2}lm(\cos(\omega t)\cos(\theta) - \sin(\omega t)\sin(\theta))$$
$$\ddot{\theta} = -\frac{g}{l}\sin(\theta) + \frac{r_{0}\omega^{2}}{l}\left(\cos(\omega t)\cos(\theta) - \sin(\omega t)\sin(\theta)\right)$$
(14)

As in the previous problem, we assume we can write $\theta = \bar{\theta} + \tilde{\Theta}$ where $\bar{\theta}$ is the slow component and $\tilde{\Theta}$ is the fast component. Plugging this into Eq (14) and expanding in powers of $\tilde{\Theta}$:

$$\ddot{\bar{\theta}} + \ddot{\tilde{\Theta}} = -\frac{g}{l}(\sin(\bar{\theta}) - \tilde{\Theta}\cos(\bar{\theta})) + \frac{r_0\omega^2}{l}\left((\cos(\bar{\theta}) - \tilde{\Theta}\sin(\bar{\theta}))\cos(\omega t) - (\sin(\bar{\theta}) + \tilde{\Theta}\cos(\bar{\theta}))\sin(\omega t)\right)$$

We can average over the fast time scale, as before, which will leave only the slow components. The fast components will be averaged to zero:

$$\ddot{\bar{\theta}} = -\frac{g}{l}\sin(\bar{\theta}) - \frac{r_0\omega^2}{l} \left(<\tilde{\Theta}\cos(\omega t) > \sin(\bar{\theta}) + <\tilde{\Theta}\sin(\omega t) > \cos(\bar{\theta}) \right)$$
(15)

Switching over to the fast components:

$$\ddot{\tilde{\Theta}} = -\frac{g}{l}\tilde{\Theta}\cos(\bar{\theta}) + \frac{r_0\omega^2}{l}\left(\cos(\bar{\theta})\cos(\omega t) - \sin(\bar{\theta})\sin(\omega t)\right)$$
(16)

We can easily integrate Eq (16) and find an expression for $\tilde{\Theta}$:

$$\tilde{\Theta} = -\frac{r_0}{l} \left(\cos(\bar{\theta}) \cos(\omega t) - \sin(\bar{\theta}) \sin(\omega t) \right)$$
(17)

Plugging in this expression into the Eq (15) we can calculate the <> terms. To save some computation, we know that any averaging term proportional to $\sin(\omega t) \cos(\omega t)$ will average to zero. Likewise, as seen above in part a), any term proportional to $\sin^2(\omega t)$ or $\cos^2(\omega t)$ will average to 1/2. Simplifying, we arrive at:

$$\ddot{\bar{\theta}} = -\frac{g}{l}\sin(\bar{\theta}) - \frac{r_0^2\omega^2}{l^2} \left(\frac{1}{2}\sin(\bar{\theta})\cos(\bar{\theta}) - \frac{1}{2}\sin(\bar{\theta})\cos(\bar{\theta})\right)$$
$$\ddot{\bar{\theta}} = -\frac{g}{l}\sin(\bar{\theta}) \tag{18}$$

Our effective potential is thus:

$$U_{\rm eff} = -\frac{g}{l}\cos(\bar{\theta})$$

and the system behaves as if there is NO motion of the pivot point. This gives us the final result of the equilibrium position:

$$\begin{split} \frac{dU_{\text{eff}}}{d\bar{\theta}} &= \frac{g}{l}\sin(\bar{\theta}) = 0 \text{ when } \bar{\theta} = 0 \text{ or } \pi \\ \frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} &= \frac{g}{l}\cos(\bar{\theta})\Big|_{\bar{\theta}=0} > 0 \text{ always} \\ \frac{d^2 U_{\text{eff}}}{d\bar{\theta}^2} &= \frac{g}{l}\cos(\bar{\theta})\Big|_{\bar{\theta}=\pi} < 0 \text{ always} \\ \bar{\theta} &= 0 \text{ is a stable equilibrium point.} \end{split}$$

2.)

We are given that the support is driven with $y(t) = y_0 \cos(\omega t)$. We begin by finding the Lagrangian:

$$L = \frac{1}{2m}(\dot{x}^2 + \dot{y}^2) - mgy$$

Writing x and y in terms of the angle θ of the pendulum:

$$x = l\sin(\theta)$$
$$y = l\cos(\theta) + y_0\cos(\omega t)$$

We can plug this into the Lagrangian to get:

$$L = \frac{1}{2m} \left[l^2 \dot{\theta}^2 + 2ly_0 \omega \dot{\theta} \sin(\theta) \sin(\omega t) \right] - mgl(1 - \cos(\theta))$$

The equations of motion are therefore:

$$\mathcal{P}l^{2}\ddot{\theta} + \mathcal{P}ly_{0}\omega^{2}\sin(\theta)\cos(\omega t) + \underline{mly_{0}\omega\dot{\theta}\cos(\theta)\sin(\omega t)} = -\mathcal{P}lgl\sin(\theta) + \underline{mly_{0}\omega\dot{\theta}\cos(\theta)\sin(\omega t)}$$
$$\ddot{\theta} + \frac{g}{l}\sin\theta + \frac{y_{0}\omega^{2}}{l}\sin(\theta)\cos(\omega t) = 0$$

If we set $\omega_0^2 = g/l$:

$$\ddot{\theta} + \omega_0^2 \left[1 + \frac{y_0 \omega^2}{g} \cos(\omega t) \right] \sin(\theta) = 0$$

We are given that the driving frequency, $\omega = 2\omega_0 + \epsilon$. Thus we can write the above equation as:

$$\ddot{\theta} + \omega_0^2 \left[1 + \frac{4y_0}{l} \cos(\omega t) \right] \sin \theta$$

We have used the fact that $\omega^2 = (2\omega_0 + \epsilon)^2 = 4\omega_0^2 + 4\omega_0\epsilon + \epsilon^2 \approx 4\omega_0^2$ to first order in ϵ . A final approximation, the small angle approximation, and letting $h = 4y_0/l$ gives us the final equation:

$$\ddot{\theta} + \omega_0^2 \left[1 + h \cos(\omega t) \right] \theta = 0 \tag{19}$$

We can approach this problem but first finding solutions when h=0. This is nothing but the S.H.O, with solution:

$$\theta(t) = a\cos(\omega_0 t) + b\sin(\omega_0 t)$$

When we let $h \neq 0$, we expect the same general form of the solution except for a slow time scale variation of the coefficients.

$$\theta(t) = a(t)\cos((\omega_0 + \frac{\epsilon}{2})t) + b(t)\sin((\omega_0 + \frac{\epsilon}{2}))$$
(20)

Plugging this equation for θ into Eq (19), and using $(\omega_0 + \frac{\epsilon}{2}) = \beta$:

$$\ddot{a}\cos(\beta t) - 2\beta \dot{a}\sin(\beta t) - \beta^2 a\cos(\beta t) + \ddot{b}\sin(\beta t) + 2\dot{b}\beta\cos(\beta t) - b\beta^2\sin(\beta t)$$
$$= -\omega_0^2 \left[1 + h\cos(\omega t)\right] \left(a\cos(\beta t) + b\sin(\beta t)\right)$$

Dropping the terms proportional to \ddot{a} and \ddot{b} :

$$-\beta^2 a \cos(\beta t) - 2\beta \dot{a} \sin(\beta t) + 2\dot{b}\beta \cos(\beta t) - b\beta^2 \sin(\beta t)$$
$$= -\omega_0^2 \left[1 + h \cos(\omega t)\right] \left(a \cos(\beta t) + b \sin(\beta t)\right)$$

We now notice that $\beta^2 = \omega_0^2 + \omega_0 \epsilon + \mathcal{O}(\epsilon^2)$:

$$-(\boldsymbol{\omega}_{0}^{\boldsymbol{\mathscr{Z}}}+\boldsymbol{\omega}_{0}\boldsymbol{\epsilon})a\cos(\beta t)-2\beta\dot{a}\sin(\beta t)+2\dot{b}\beta\cos(\beta t)-b(\boldsymbol{\omega}_{0}^{\boldsymbol{\mathscr{Z}}}+\boldsymbol{\omega}_{0}\boldsymbol{\epsilon})\sin(\beta t)$$
$$=-\boldsymbol{\omega}_{0}^{2}\left[\boldsymbol{\mathscr{I}}+h\cos(\boldsymbol{\omega} t)\right]\left(a\cos(\beta t)+b\sin(\beta t)\right)$$

Or after some rearranging:

$$-\omega_0 \epsilon \left(a \cos(\beta t) + b \sin(\beta t) \right) - 2\beta \left(\dot{a} \sin(\beta t) - \dot{b} \cos(\beta t) \right) +\omega_0^2 h \left[a \cos((2\omega_0 + \epsilon)t) \cos(\omega_0 + \frac{\epsilon}{2}) + b \cos((2\omega_0 + \epsilon)t) \sin(\omega_0 + \frac{\epsilon}{2}) \right] = 0$$

We use some trig identities to rewrite the terms in brackets in the above equation:

$$\cos((2\omega_0 + \epsilon)t)\cos(\omega_0 + \frac{\epsilon}{2}) = \frac{1}{2}\cos((\omega_0 + \frac{\epsilon}{2})t) - \frac{1}{2}\cos((3\omega_0 + \frac{3\epsilon}{2})t)$$
$$\cos((2\omega_0 + \epsilon)t)\sin(\omega_0 + \frac{\epsilon}{2}) = -\frac{1}{2}\sin((\omega_0 + \frac{\epsilon}{2})t) + \frac{1}{2}\sin((3\omega_0 + \frac{3\epsilon}{2})t)$$

We only keep terms on resonance, dropping the third harmonic terms, which allows us to write:

$$-\omega_0 \epsilon \left(a \cos(\beta t) + b \sin(\beta t) \right) - 2\beta \left(\dot{a} \sin(\beta t) - \dot{b} \cos(\beta t) \right) + \omega_0^2 h \left[a \cos(\beta t) - b \sin(\beta t) \right] = 0$$
(21)

Or after re-arranging:

$$\left[-\omega_0\epsilon a + 2\beta\dot{b} + \frac{\omega_0^2h}{2}a\right]\cos(\beta t) + \left[-\omega_0\epsilon b - 2\beta\dot{a} - \frac{\omega_0^2h}{2}b\right]\sin(\beta t) = 0 \quad (22)$$

Now Eq (22) has a non-trivial solution if

$$-\omega_0\epsilon a + 2\beta \dot{b} + \frac{\omega_0^2 h}{2}a = 0$$
$$\omega_0\epsilon b - 2\beta \dot{a} - \frac{\omega_0^2 h}{2}b = 0$$

 Or

$$\dot{b} - \frac{\epsilon}{2}a + \frac{\omega_0 h}{4}a = 0$$
$$\dot{a} + \frac{\epsilon}{2}b + \frac{\omega_0 h}{4}b = 0$$

We assume a solution for $a(t) = a_0 \exp(st)$ and $b(t) = b_0 \exp(st)$. Now plug into the above equations:

$$sb_0 = \left(\frac{\epsilon}{2} - \frac{\omega_0 h}{4}\right)a_0\tag{23}$$

$$sa_0 = -\left(\frac{\epsilon}{2} + \frac{\omega_0 h}{4}\right)b_0\tag{24}$$

Multiplying Eq (23) and (24) together:

$$s^{2}a_{0}b_{0} = \left(-\frac{\epsilon^{2}}{4} + \frac{\omega_{0}^{2}h^{2}}{16}\right)a_{0}b_{0}$$
$$s^{2} = \frac{\omega_{0}^{2}h^{2}}{16} - \frac{\epsilon^{2}}{4}$$
(25)

The growth rate is thus:

$$s = \sqrt{\frac{\omega_0^2 h^2}{16} - \frac{\epsilon^2}{4}}$$

For stable motion, we want s^2 to be negative. For then, s is imaginary, and the coefficients are bounded.

Stable for
$$\epsilon^2 > \frac{\omega_0^2 h^2}{4}$$

Conversely, instability arises if s^2 is positive. For then s is real, and the coefficients grow exponentially.

Unstable for
$$\epsilon^2 < \frac{\omega_0^2 h^2}{4}$$

Problem: Compute the threshold for parametric instability in the presence of linear frictional damping, as well as mismatch. For what range of mismatch ϵ will instability occur?

Solution: We should start by writing down Mathieu's equation where linear frictional damping means we have a term proportional to $\dot{\phi}$, i.e.

$$\ddot{\phi} + \gamma \dot{\phi} + \omega_0^2 \phi \left(1 + h \cos 2\omega t\right) = 0 \tag{1}$$

where $\omega = \omega_0 + \epsilon/2$ is half the forcing frequency that results in the parametric resonance and $h = 4y_0/\ell$. A crucial brainwave that we must have is that "threshold" of instability means that instead of posing periodic solutions of the form

$$\phi(t) = a(t)\cos\omega t + b(t)\sin\omega t \tag{2}$$

where the coefficients depend on time and are allowed to blow up, we must instead set the coefficients to constants: a(t) = a and b(t) = b. Now proceed to grind by plugging in $\phi(t) = a \cos(\omega t) + b \sin(\omega t)$ into equation (1).

$$\ddot{\phi} = -a\omega^2 \cos \omega t - b\omega^2 \sin \omega t$$
$$\dot{\phi} = \omega \left(-a \sin \omega t + b \cos \omega t \right)$$

$$\implies a\omega^2 \cos \omega t - b\omega^2 \sin \omega t + \gamma \omega \left(-a \sin \omega t + b \cos \omega t \right) + a\omega_0^2 \cos \omega t + b\omega_0^2 \sin \omega t + \omega_0^2 h \cos 2\omega t \left(\cos \omega t + b\omega_0^2 h \sin \omega t \right) = 0.$$

Use the trig identity

$$\cos 2\omega t \cos \omega t = \frac{1}{2} \left(\cos \omega t + \cos 3\omega t \right)$$

to separate into an on-resonance $(\cos \omega t)$ and off-resonance $(\cos 3\omega t)$ term which we throw away because it does not contribute to the instability. The goal now is to factor out the $\cos \omega t$ and $\sin \omega t$ terms, plug back in $\omega = \omega_0 + \epsilon/2$, omit terms of orders ϵ^2 and higher, and solve the system of equations for the coefficients. The algebra is bad but if we note that to lowest order in ϵ

$$\omega^2 = (\omega_0 + \epsilon/2)^2 = \omega_0^2 + \omega_0 \epsilon$$

and persevere we will find that

$$\left(-a\omega_0\epsilon + \gamma b\omega_0 + \frac{1}{2}a\omega_0^2h\right)\cos\omega t - \left(b\omega_0\epsilon + \gamma a\omega_0 + \frac{1}{2}b\omega_0^2h\right)\sin\omega t = 0.$$
 (3)

We have nontrivial solutions when the 2 × 2 system of the coefficients has a 0 determinant. Lets change $\epsilon \to \epsilon_0$ to denote this solution as the threshold frequency mismatch so for any $\epsilon < \epsilon_0$ we will have instability. In matrix form this equation would be, after dropping an overall factor of ω_0 and subbing in $h = 4y_0/\ell$,

$$0 = \begin{vmatrix} -\epsilon_0 + \frac{1}{2}\omega_0 h & \gamma \\ \gamma & \epsilon_0 + \frac{1}{2}\omega_0 h \end{vmatrix} = \left(-\epsilon_0 + \frac{1}{2}\omega_0\right)\left(\epsilon_0 + \frac{1}{2}\omega_0\right) - \gamma^2$$

Winter 2015

PHYS 200B HW Problem 01.03 Logan Howe

$$\epsilon_0^2 = \left(\frac{\omega_0 y_0}{\ell}\right)^2 - \gamma^2. \tag{4}$$

Thus, any $\epsilon < \epsilon_0$ will cause instability. However, because there is linear damping the amplitude y_0 must be above a critical value as well. We find this by assuming perfect frequency matching, i.e. by letting $\epsilon \to 0$, and solving for $y_{0,\min}$:

$$y_{0,\min} = \frac{\gamma \ell}{\omega_0}.$$
(5)

The physical interpretation is that is we are perfectly on resonance then we MUST drive the oscillator with $y_0 > y_{0,\min}$, otherwise the damping term prevents the parametric instability.

Solution for HW#1 Winter 201 PHYS 200B 4. Let H(q, P, +) = Ho(q, P) + V(q) dit, where A(+) is periodic, with period acet. Here T is the motion governed by Ho = p2 + Vo (9). a) The mean field are the slow equations with the short time averaged out. First, we find the general equations of notion by Hamilton's equati $\dot{\rho} = \frac{\partial H}{\partial q} = -\left(\frac{\partial V_0(q)}{\partial q} + \frac{\partial V(q)}{\partial q}\frac{d^2}{d^2}\right) \qquad \dot{q} = \frac{\partial H}{\partial p} = \frac{\rho}{m}$ $mq = -\frac{2V_0}{2q} - \frac{2V_0}{2q} \frac{d^2A}{dt^2} \qquad p = mq$ $\dot{p} = m \dot{q}$ Now we need to seperate into to two time scales q=q+q, slow and fast respectively, $M\left(\ddot{q} + \ddot{q}\right) = -\frac{\partial V_{0}(q_{1}+q_{2})}{\partial q_{1}} - \frac{\partial V(q_{1}+q_{2})}{\partial q_{1}} \frac{\partial^{2} A}{\partial t^{2}}$ The fast motion is supposed to be small in amplitude i.e. a perturbation where que que so we expand in small q around que s $M(\ddot{q} + \ddot{q}) = -\left(\frac{2V_{o}}{2q}\right)_{q_{s}} + q_{f} \frac{2V_{o}}{2q}\left(q_{f} + \dots\right) +$ - (24/95 + 25 29/95 + 11) 2+2 Now ~ - dvo - 9+ 200 - 24 drA - 9+ 29; drA = V=V(25) slow fast fast slow (depends on grs) (multiplied) (dra beat term) Vo = Vo Cars

Now average over a short time period T: $m(\langle \dot{q}_{5} \rangle + \langle \ddot{q}_{f} \rangle) = -(\langle \dot{J}_{25} \rangle + \langle q_{f} \dot{d}_{q} \rangle + \langle \dot{J}_{25} \dot{d}_{r} \rangle + \langle \dot{q}_{f} \dot{d}_{q} \rangle + \langle \dot{q} \rangle + \langle \dot{q$ For fast equation only fast terms should contribute. mg = 9, 32 + 29. dt but 24 ~ Ro = 1 (small, short) and mg ~ $m\omega^2 q = m(\frac{1}{\tau^2})q$ >> $m(\frac{1}{\tau^2})q_1$, so: mg = dy. dA -> qf = d A-1 (can't have t, t'; they) Returning to the slow equation V(q), Vo(qs) are slowly varying and effectively constant: $M \frac{q}{2} + M \frac{q}{2} \frac{s}{5} = -\frac{3}{9} \frac{1}{9} \frac{3}{9} \frac{q}{9} \frac{q}{7} \frac{q}{7} \frac{s}{7} \frac{s}{9} \frac{s}{1} \frac{s$ The fast terms guevage to zero over T: $m\ddot{q}_{s} = -\frac{\partial V_{o}}{\partial q_{s}} + \frac{1}{m} \frac{\partial V}{\partial q_{s}} \frac{\partial^{2} V}{\partial q_{s}} \left\langle A \frac{\partial^{2} A}{\partial t^{2}} \right\rangle = -\frac{\partial V_{o}}{\partial q} + \frac{1}{2m} \left(\frac{\partial V}{\partial q_{s}} \right)^{2} \left\langle A \frac{\partial^{2} A}{\partial t^{2}} \right\rangle$ The effective Hamiltonian K(Rg) = Ho(Rg) + In (A) 2 (2VG) sives: gives: $\dot{p} = -\frac{\partial k_0}{\partial q} - \frac{1}{2} \left(\frac{\partial A}{\partial t} \right)^2 \left(\frac{\partial A}{\partial q} \cdot \frac{\partial V}{\partial q} \cdot \frac{\partial V}{\partial q} \right), \quad \dot{q} = \frac{P}{m}$ so $mq = -\frac{3V_{e}}{3q} - \frac{1}{5}\frac{3V_{e}}{3q}\left(\frac{3k}{3t}\right)$ but $\langle A \xrightarrow{d^2A}_{t+1} \rangle = \frac{1}{T} \begin{pmatrix} A \xrightarrow{d^2A}_{t+1} dt = \frac{1}{T} \begin{pmatrix} A \xrightarrow{d^2A}_{t+1} - \begin{pmatrix} a \xrightarrow{d^2A}_{t+1} \end{pmatrix} dt \end{pmatrix} = -\langle \begin{pmatrix} d \xrightarrow{d^2A}_{t+1} \end{pmatrix} \rangle$ (periodic) substituting this identity into the mean field equation for q, gives equivalence i.e. the mean field equations can be derived using this effective Hamiltonian K(p,q).

Problem 5

Consider the asymmetric top, with moments of inertia $I_1 < I_2 < I_3$. Here 1, 2, 3 refer to the principal axes in a frame for which the inertia tensor is diagonal. Using the Euler equations:

a.) Derive the equations of motion for $\Omega_1(t)$, $\Omega_2(t)$, and $\Omega_3(t)$, the angular frequencies associated with axes 1, 2, and 3.

Recall, from rigid body mechanics,

$$\overrightarrow{N}^{\text{ext}} = \left(\frac{d\overrightarrow{L}}{dt}\right)_{\text{inertial}} = \left(\frac{d\overrightarrow{L}}{dt}\right)_{\text{body}} + \overrightarrow{\Omega} \times \overrightarrow{L} = I\overrightarrow{\Omega} + \overrightarrow{\Omega} \times (I\overrightarrow{\Omega})$$

This results in the Euler equations, giving us equations of motion for $\Omega_1(t)$, $\Omega_2(t)$, and $\Omega_3(t)$.

$$I_{1}\Omega_{1}(t) = (I_{2} - I_{3})\Omega_{2}\Omega_{3} + N_{1}^{\text{ext}}$$
$$I_{2}\dot{\Omega}_{2}(t) = (I_{3} - I_{1})\Omega_{3}\Omega_{1} + N_{2}^{\text{ext}}$$
$$I_{3}\dot{\Omega}_{3}(t) = (I_{1} - I_{2})\Omega_{1}\Omega_{2} + N_{3}^{\text{ext}}$$

Since there is no external torque on the top, $N^{\text{ext}} = 0$ and

$$I_{1}\dot{\Omega}_{1}(t) = (I_{2} - I_{3})\Omega_{2}\Omega_{3}$$
$$I_{2}\dot{\Omega}_{2}(t) = (I_{3} - I_{1})\Omega_{3}\Omega_{1}$$
$$I_{3}\dot{\Omega}_{3}(t) = (I_{1} - I_{2})\Omega_{1}\Omega_{2}$$

b.) Show that if $\Omega_2 \cong \Omega_0$ while Ω_1 , Ω_3 start from an infinitesimal perturbation, instability results. Show that $\Omega_1 \cong \Omega_0$ or $\Omega_3 \cong \Omega_0$ is stable.

First, let's consider the case $\Omega_2 \cong \Omega_0$. Let $\overrightarrow{\Omega} = \Omega_0 \hat{e}_2 + \overrightarrow{\delta\Omega}$, where $\overrightarrow{\delta\Omega} = (\delta\Omega_1, \delta\Omega_2, \delta\Omega_3)$. The equations of motion become

- ÷

$$I_{1}\delta\Omega_{1}(t) = (I_{2} - I_{3})\Omega_{0}\delta\Omega_{3} + \mathcal{O}(\delta\Omega_{2}\delta\Omega_{3})$$
$$I_{2}\delta\dot{\Omega}_{2}(t) = 0 + \mathcal{O}(\delta\Omega_{1}\delta\Omega_{3})$$
$$I_{3}\delta\dot{\Omega}_{3}(t) = (I_{1} - I_{2})\Omega_{0}\delta\Omega_{1} + \mathcal{O}(\delta\Omega_{1}\delta\Omega_{2})$$

So, to first order in $\delta \Omega_i$,

$$\delta \ddot{\Omega}_{1}(t) = \Omega_{0}^{2} \frac{(I_{2} - I_{3})(I_{1} - I_{2})}{I_{3}I_{1}} \delta \Omega_{1}$$
$$\delta \ddot{\Omega}_{3}(t) = \Omega_{0}^{2} \frac{(I_{1} - I_{2})(I_{2} - I_{3})}{I_{1}I_{3}} \delta \Omega_{3}$$

Let
$$\Omega^2 = \Omega_0^2 \frac{(I_1 - I_2)(I_2 - I_3)}{I_1 I_3}$$
.

$$\delta \ddot{\Omega}_1(t) = \Omega^2 \delta \Omega_1$$
$$\delta \ddot{\Omega}_3(t) = \Omega^2 \delta \Omega_3$$

Since $I_1 < I_2 < I_3$, $I_1 - I_2 < 0$ and $I_2 - I_3 < 0$, so $\Omega^2 > 0$ and $\delta\Omega_1$, $\delta\Omega_3$ have general solution $c_1 e^{\Omega t} + c_2 e^{-\Omega t}$, which increases exponentially with time, resulting in instability. So for $\Omega_2 \cong \Omega_0$, perturbations in $\delta\Omega_1$, $\delta\Omega_3$ result in instability.

Next, consider the case $\Omega_1 \cong \Omega_0$. Here, $\overrightarrow{\Omega} = \Omega_0 \hat{e}_1 + \overrightarrow{\delta\Omega}$, where $\overrightarrow{\delta\Omega} = (\delta\Omega_1, \delta\Omega_2, \delta\Omega_3)$. The equations of motion become

$$I_{1}\delta\dot{\Omega}_{1}(t) = 0 + \mathcal{O}(\delta\Omega_{2}\delta\Omega_{3})$$
$$I_{2}\delta\dot{\Omega}_{2}(t) = (I_{3} - I_{1})\Omega_{0}\delta\Omega_{3} + \mathcal{O}(\delta\Omega_{1}\delta\Omega_{3})$$
$$I_{3}\delta\dot{\Omega}_{3}(t) = (I_{1} - I_{2})\Omega_{0}\delta\Omega_{2} + \mathcal{O}(\delta\Omega_{1}\delta\Omega_{2})$$

So, to first order in $\delta \Omega_i$,

$$\begin{split} \delta \ddot{\Omega}_{2}(t) &= \Omega_{0}^{2} \frac{(I_{3} - I_{1})(I_{1} - I_{2})}{I_{3}I_{2}} \delta \Omega_{2} \equiv \Omega^{2} \delta \Omega_{2} \\ \delta \ddot{\Omega}_{3}(t) &= \Omega_{0}^{2} \frac{(I_{1} - I_{2})(I_{3} - I_{1})}{I_{2}I_{3}} \delta \Omega_{3} \equiv \Omega^{2} \delta \Omega_{3} \end{split}$$

Now, $\Omega^2 < 0$, so $\delta\Omega_2$, $\delta\Omega_3$ have general solution $c_1 e^{i|\Omega|t} + c_2 e^{-i|\Omega|t}$, which are oscillating solutions and result in stable motion.

Similarly, consider the case $\Omega_3 \cong \Omega_0$. Here, $\overrightarrow{\Omega} = \Omega_0 \hat{e}_3 + \overrightarrow{\delta\Omega}$, where $\overrightarrow{\delta\Omega} = (\delta\Omega_1, \delta\Omega_2, \delta\Omega_3)$. The equations of motion become

$$\begin{split} I_1 \delta \dot{\Omega}_1(t) &= (I_2 - I_3) \Omega_0 \delta \Omega_2 + \mathcal{O}(\delta \Omega_2 \delta \Omega_3) \\ I_2 \delta \dot{\Omega}_2(t) &= (I_3 - I_1) \Omega_0 \delta \Omega_1 + \mathcal{O}(\delta \Omega_1 \delta \Omega_3) \\ I_3 \delta \dot{\Omega}_3(t) &= 0 + \mathcal{O}(\delta \Omega_1 \delta \Omega_2) \end{split}$$

To first order in $\delta \Omega_i$,

$$\begin{split} \delta \ddot{\Omega}_{1}(t) &= \Omega_{0}^{2} \frac{(I_{2} - I_{3})(I_{3} - I_{1})}{I_{2}I_{1}} \delta \Omega_{1} \equiv \Omega^{2} \delta \Omega_{1} \\ \delta \ddot{\Omega}_{2}(t) &= \Omega_{0}^{2} \frac{(I_{3} - I_{1})(I_{2} - I_{3})}{I_{1}I_{2}} \delta \Omega_{2} \equiv \Omega^{2} \delta \Omega_{2} \end{split}$$

Just as in the last case, $\Omega^2 < 0$, so $\delta\Omega_1$, $\delta\Omega_2$ have general solution $c_1 e^{i|\Omega|t} + c_2 e^{-i|\Omega|t}$, which are oscillating solutions and result in stable motion.

c.) What are the two conserved quantities which constrain the evolution in b.)?

The two conserved quantities are energy and the square of the angular momentum.

$$E = \frac{1}{2}(I_1\Omega_1^2 + I_2\Omega_2^2 + I_3\Omega_3^2)$$
$$|\overrightarrow{L}|^2 = I_1^2\Omega_1^2 + I_2^2\Omega_2^2 + I_3^2\Omega_3^2$$